Word Semantic Representations using Bayesian Probabilistic Tensor Factorization
نویسندگان
چکیده
Many forms of word relatedness have been developed, providing different perspectives on word similarity. We introduce a Bayesian probabilistic tensor factorization model for synthesizing a single word vector representation and per-perspective linear transformations from any number of word similarity matrices. The resulting word vectors, when combined with the per-perspective linear transformation, approximately recreate while also regularizing and generalizing, each word similarity perspective. Our method can combine manually created semantic resources with neural word embeddings to separate synonyms and antonyms, and is capable of generalizing to words outside the vocabulary of any particular perspective. We evaluated the word embeddings with GRE antonym questions, the result achieves the state-ofthe-art performance.
منابع مشابه
Modelling Relational Data using Bayesian Clustered Tensor Factorization
We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us “understand” a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff...
متن کاملMulti-HDP: A Non Parametric Bayesian Model for Tensor Factorization
Matrix factorization algorithms are frequently used in the machine learning community to find low dimensional representations of data. We introduce a novel generative Bayesian probabilistic model for unsupervised matrix and tensor factorization. The model consists of several interacting LDA models, one for each modality. We describe an efficient collapsed Gibbs sampler for inference. We also de...
متن کاملVariational Inference For Probabilistic Latent Tensor Factorization with KL Divergence
Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents full Bayesian inference via variational Bayes that facilitates more powerful modelling and allows more sophist...
متن کاملA Bayesian Tensor Factorization Model via Variational Inference for Link Prediction
Probabilistic approaches for tensor factorization aim to extract meaningful structure from incomplete data by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to large scale models. This paper presents full Bayesian inference via VB on both single and coupled tensor factorization models. Our method can be run even for very...
متن کاملMapping between Compositional Semantic Representations and Lexical Semantic Resources: Towards Accurate Deep Semantic Parsing
This paper introduces a machine learning method based on bayesian networks which is applied to the mapping between deep semantic representations and lexical semantic resources. A probabilistic model comprising Minimal Recursion Semantics (MRS) structures and lexicalist oriented semantic features is acquired. Lexical semantic roles enriching the MRS structures are inferred, which are useful to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014